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Abstract

We consider the problem of reconstruction of functiéfi®om generalized Paley—Wiener spaces
in terms of their values on complete interpolating sequenge We characterize the set of data
sequences$ f (zx)} and_ exhibit an explicit solution to the problem. Our development involves the
solution of a particulad problem.
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1. Introduction

In this article, we consider questions of interpolation in the generalized Paley—Wiener
spacePWP-* consisting of entire functioriof exponential-type whose derivative of order
k, F© belongs toL?(R) when restricted to the real axis. The sp&®&” X is naturally
endowed with the seminorm

IF lpwrk = I1F® Lo Ry
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In our considerations the paramefesatisfies the restriction k p < oo andk is a
non-negative integer.

Before describing the contents more explicitly we briefly review some background ma-
terial.

If k = 0 then||F| pye.« is @ norm while in the caske > 0 it is a seminorm whose null
space is the class of polynomials of degreé — 1. Also note thaPWP-* ¢ PWP-4+1 as
follows from the appropriate version of the Bernstein inequality. Below we writeF\Wst
for PWP-0,

In the engineering literature the classical Paley—Wiener spééeis viewed as the class
of frequency band limited functions of finite power.

The classical Whittaker—Kotel’nikov—Shannon sampling theorem characterizes the data
sampleqg F(n)},c7 of elements in PW2 sampled on the integer lattiZéand provides an
explicit reconstruction formula,

> sinn(z — n)
F(2) n;m F == @

for F in terms of the data samples. For details see, for exarffild,L1] or [20]. Formula
(1) is commonly known as the Whittaker cardinal sine series.

This result has been extended in several directions.

(i) The sequence8 = {z,} which ensure thatthe mappingifo the sample§F (z,)},e7
is an isomorphism betwedP\W? and/? have been completely characterized. The inverse
of this mapping is given by the explicit reconstruction formula

s
FQO =Y Fag ©

= (zn)(z — zn)’

(2)
HereSis the generating function &. It is defined by the relation

S(z) = lim (z - z0) [1 (1 - i) : ®)

Z
{zn€Z:|zn|<r,n#0} n

we assume that, # 0 forn # 0.

Such sequences are called complete interpolating sequence$é’ . Results in this
direction go back to the 1936 work of Paley and Wieji&i, represent the contribution of
many investigators, and are summarized in [7,13,20]. We also refer the reader to Section 2
for more details. Everywhere below we assume thé a complete interpolating sequence
for PWP-,

(i) In 1974, Schoenberg [17] characterized the data sanjples },,c7 of entire functions
in PW2% and showed that splines could be used in a summability-type reconstruction
procedure. Since the class of such entire functions is largeP¥&nfor instance it contains
polynomials of degree less thkas well as other functions which fail to be square integrable
on the real axis, this result extends the classical sampling theorem in a certain sense.

(iif) The results described in (ii) have been extended to cases whé&saeplaced by
a more general interpolating sequencégsSpecifically, in [14] the data samplég(z,,)}
of entire functionsF € PW2* are characterized in cases when the sequences of sampling
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nodegz,} are real complete interpolating sequence$Mf and several summability-type
reconstruction procedures fBrin terms of such data samples are provided.

In this article, we develop another approach which leads one to explicit reconstruction
formulas analogous to (1) and (2). These formulas are new even in the classicélcage
This also allows us to extend the results mentioned in item (iii) to include the sps@eS,

1 < p < o0, and remove the restriction that the sampling sequéhbe real.

Before going into details we bring attention to several issues which make the problem
under consideration of interest to us.

Fork > 0 the clasPW?-* is considerably wider thaRWP. For example, it contains
polynomials of degreeCk — 1 as well as many other entire functions which fail to decay
on the real axis. Nevertheless, one can prove (see Section 3.2 for the details) tit#ach
complete interpolating sequence still is a set of uniqueness for the Spa¢es. So the
question appears about how one can reconstruct functions from these wider spaces in terms
of their samples at BW”-complete interpolating sequence.

We deal with this matter by considering a more complicated interpolation problem.
Namely, instead of simple pointwise interpolation we consider the interpolation of cer-
tain linear combinations, divided differences, of point values. This presents an interesting
challenge because the routine interpolation tools such as Lagrange-type interpolation series
cannot be applied directly for such a non-local problem. As a consequence, we were led to
develop techniques of interpolation associated withitpeoblem and combine them with
the classical interpolation techniques (see e.g. [11]) for Paley—Wiener spaces. We refer the
reader to [6], Chapter IV for an account of th@roblem.

The remainder of this article is organized as follows: Sections 2 contains the precise
statements of the main results including the necessary background material. All the technical
details are relegated to Section 3.

2. Preliminaries and the main results
2.1. Complete interpolating sequences and generating functions

We start by describing the basic properties of complete interpolating sequences. We refer
the reader to [13] for more details and further references.

Recall that a sequenc® = {z;} C C, zx = xx + iy, is called a complete interpolating
sequence foPWP? if for each sequencgy} € [P the interpolation problem

F(zr) = ax
has a unique solutioR € PWP.
Theorem A (Lyubarskii and Seipl3] and Pavlov [16]). In order that a sequencg =

{zk}%,, C C be a complete interpolating sequence for PWis necessary and sufficient
that

e H :=sup|yx| < oo,
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e Zis uniformly discretei.e.

inf — 0. 4
]I(gél lzk — 21l > 4)

e The canonical produc(3) converges on each compact setnto an entire function
S of exponential-type and for each real a such that| > 2H the functionw(x) =
|S(x + ia)|? satisfies th&.A,) condition:

l 1 [7—1
SUp(—/w(t)dt) <—/w_1/('"_1)(t)dt) < o0, (5)
rcr N7 1] Jr

where the supremum is taken over all finite intervals Rin

The functionSis called thegenerating functiorof Z. Non-negative functiong which
enjoy the constraint (5) are said to belong to the claks), see [18, Chapter V].
If Z = {z,}is a complete interpolating sequence, each PW? can be represented as

S(2)
F(z) = F(z))————.
@=2 Fe g e
This series converges i (R)-norm and also
I Fllpw, < I{F @) }lip- (7)

Here and in what follows the siga means that the ratio of the two sides lies between two
positive constants. In particular the system

{ S }
S"(zi)(z = z1) J g

is an unconditional basis IRW?.
In what follows we always assume that the points frémare enumerated so that
Rezr <Rezi41.

(6)

2.2. Divided differences, P, andi?¥(2)

For any functiorf defined onZ the expressiorf!*!(z,) denotes the forward divided differ-
ence of ordek which is usually denoted biyf (z,,), . .., f(za+x)], Se€[1, formulas (2.6.3)
and (2.6.6)]. Such a difference is usually defined in terms of a real sequgnce. , 7,1}
but the same definition can be used in our case as well. The noftitdp, ) is convenient
since it allows us to usg¢l¥! to succinctly denote the corresponding sequen&éhbrward
divided differences, namely*! = { f1*¥1(z,)},, < z. Thus, for eaclk, f*! may be viewed
as a function org defined pointwise by

f[O] (zn) = f(zn)
and, fork =1,2,...,

FEU(q) — U,
in+k — Zn

Mz, =
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For every non-negative integkwe define/”¥(Z) to be the class of all functions :
Z — Cwhose corresponding sequencéibfdivided forward differences!®! isin 17 (2).
The linear space’*(2) has a seminorm similar to that RW?X:

I flipkczy = LM @ for felPh(2).
2.3. The interpolation problem and its solution

We start with the elementary problem
For each find such a functiorf,, in PWP-* that

if zm € 2\ {za}.

Solution to (8) can be obtained directly. We introduce some additional notation in order
to write it down. From the properties of complete interpolating sequences one can easily
see that there exist a sequence of numbgss C R and a sequence of contoypg } with
the following properties:

A ={g 1o o5 ®)

0 < 01 :=inf(ot41 — %) < SUPGL+1 — 0) = A1 < 00;

7n N{z:limz| > 2H} = {a, +|y’ ly| > 2H};

length¢, N {z : [Imz|<2H}) < K < o0;

lety, split C into two domaind";| located, respectively, to the left and right)gf Then
{zkte<n € T, and{zghesn C T

Let pr(z) be the polynomial defined by

) = { 1 if k=1,
PRI =N @ = zns) @ = zna2) - (@ — zak—) I k=2,3,...,
and consider the function
S n(0) d( T+
Dn2) = -~ /' - 250 + Pn(2) 2y (2)- 9)

Here S(z) is the generating function of defined by (3) ang; (z) is the characteristic
function of ;. The properties of the generating functiSty) imply that the integral is
convergent and th&t, (z) is well defined as an analytic function for alivhich are not on the
contoury,.. Furthermore(®, (z) can be extended as an entire function of exponential-type
no greater tham: it follows from the Sokhotskii—Plemelj formula thé¥, is continuous in

the whole plane and hence singularities alppgan be erased. The growth estimates are
straightforward.

Theorem 1. The entire functio, (z) defined by9) belongs to PW-*. Moreover
(Dl[1k](Zm) =0, m#n
and

(I)Lk](zn) = Zn+k — Zn-
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Thus the functions
an = (Zn+k - Zn)71®n

solve the interpolation problen{s).

Remark. The expression (9) can be viewed as a solution of a spe_tiﬁimblem. The
function p, ;" satisfies

—(Pn @1 @) (zm) = @tk — 20)Onm

and is analytic fot ¢ y,,. The first term in the right-hand side of (9) is chosen so that

S(z) / n () dC
n(Z <
<2m (C—Z)S(C)) (19 @)% ()
so the resulting functio®, belongs taPW?”-* and solves the same interpolation problem.

The solution to the general problem (8) is reconstructed from the elementary solutions
¥,,. Take polynomialg, (z) of degree at most — 1 and such that the functions

0,=Y¥,—q (10)
satisfy
Y0 =0, j=0,1,....k—1. (11)

These functions still solve the interpolation problem (8) and @156 = ¥®, n ¢ Z.
Now take{o(z,)} € IP**(Z) and denote,, = al¥1(z,).

Theorem 2. For each sequencg(z,)} € [7"¥(Z) the interpolation problem

F(zix) = a(zx), k=0,£1.£2,... (12)
has a solution in PW*. This solution is unique and

I F Nl pwrk =< [lotllpe. (13)

This solution can be represented in the form

O() =) @,0,() + P(2), (14)

where P is a polynomial of degree at mést 1. The serieg14) converges uniformly on
each compact set it and also in PW'X.

3. Proofs of the main results: sine-type functions

In this section we prove that, & is aPWP-complete interpolating sequence, then the
mapping

Tz:F+— Flz (15)
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is a bounded operator froPW?-X into /7f and has a zero kernel. Under the additional
assumption that the generating funct®of Z is a sine-type function (see definition below

at Section 3.3) we prove Theorems 1 and 2 thus showing that this operator is invertible.
We also provide explicit construction of the inverse operator. Later in Section 4 we de-
velop techniques which are needed to study the general case i.e. when, for sorfite

|S(x +ia)|” € (Ap) and indicate the changes to be done in this case.

3.1. OperatoiTz

First we mention thag satisfies
A= SUp|Z,1+1 — Zy| < 00. (16)

Indeed if this is not the case, one can pick a sequéngg with |z,,+1 — z,y| > N,
then the functionfy = (z — (zyy+1 — z,,N)/Z)‘1 SiN[n(z — (zuy+1 — 2ny)/2)] delivers a
contradiction to (7). Indeed,Fx |[pwr < 1, while (easy estimatg){ Fy (z,)}ll;» — 0 as
N — oo.

Proposition. OperatorTz defined by(15)is a bounded operator from P into /7-* and
KerTz = 0.

Proof. Without loss of generality one may assume that the sequg&nisdocated in the
strip{z € C;1 < Imz < H} for someH > 0. Denote bylIl, the rectangles whose
boundarydIl, consists of the segments Be— 1 + i[O, H], [Rez, — 1,Rez,+x + 1],
Rez,+x + 1+ [0, H], [Rez, — 1,Rez, 4 + 1] + iH. ThatTz is bounded follows from
the lemma below

Lemma 1. For each n there exist functions, ;;,j =0,1,...,k1=0,...,k— j which
are holomorphic in a neighborhood of,, and such that

g N zns) = / g Own, (O dl (17)
o1,
for each function g which is holomorphic Id,, and continuous in the closure of,. In
addition
|wn,j,l(C)| < Mv C S aHl‘l? (18)

where M does not depend upenj, and I.

Assume that this lemma is already proved. pgtbe the arc-length measure along the
boundarydIl, andu = >_ u,. It follows from (4) and (16) thaj is a Carleson measure
in C*. (We refer the reader to [9] for definition and properties of the Carleson measures).
Therefore forF e PWP-*:

S FHE)r =)

P
ﬁ ; FOQwn k00 dl

olly,
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r/q
(k)
< En /an,,'F 171t (/mnldCl>

< Const / FOOIP1du(©) < Const] Flpyyp..
C

Here we use the fact th&t*) (z)e¢!™ e HP(C*) and also thae'™| < 1 forImz € (0, H).
O

Proof of Lemma 1. We perform induction o For j = 0 the statement is evident, take
0y.01(0) = [2in({ — zn41)1~ L. Assuming that we have constructedajl ;1 ; we mention
that
Ll 1 (-1
g Gny) = ———— ¢ Olwn,j-1,14(0) — @n, j—1,(01dL. (19)
olly

Tn+l+j — Tn+l
Fix some point,, € JI1, and consider the function

¢
CUn.,j,l(C) =1 [Cun,j—l,l—&—j (s) — wn,j—l,l(s)] ds, C € ann’
g”

where integration is performed aloddl,, . If
K = /(’JH [wn,j—l,l—i-j (s) — wn,j—l,l(s)] ds =0,

thenw, ;; may be extended as a function holomorphic in a vicinityb, and relation
(17) comes from integration by parts.Af ~ 0 integration by parts still gives

N zup) = ﬁ . g O, j 1O dl+ Kg U™ D(,),

valid for any functiong holomorphic inI1,,. This yieldsK = 0 for if one replaceg(z)

by g(z) + az/~1, the left-hand side of this relation remains unchanged whence the right-
hand side increases X (j — 1)!. This completes the proof of (17). Estimate (18) follows
directly from the construction of the functions, ;;. O

3.2. Uniqueness
Lemma 2. If Z is a complete interpolating sequence for P\ttienker Tz = {0}.

Proof. Follows the standard pattern so we give just a short outline. Let, as b&bee,
the generating function fo€ and F € KerT|z. Then®(z) = F(z)/S(z) is an entire
function and it suffices to prove thdt = 0. Clearly® is a function of zero exponential
type so it suffices to prove thdi(ly) — 0 asy — =+oo. Take an auxiliary functiorp
which is an entire function of exponential-typg¢2, such thatb(t)tk+2 — 0 ast — oo,
teRandin add|t|or‘¢(§) = 1 at a vicinity of zero. Here as usualstands for the Fourier
transform. LetFy (x) = F*¢(x) andF> = F — F1. We haveF; € PWP*%, in addition it has
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exponential type at most/2. We also havé’z(k) =F® _ Fl(k) € PWP. The latter yields

F> € PWP since the Fourier transform @ (if considered as a distribution) vanishes in a
vicinity of zero, for such functions integration does not destroy the property of belonging
to L?. Now Fi(iy)/S(iy) — O follows from the fact that type of is at mostr/2. That
F>(y)/S(ly) — 0 is a standard estimate see §1B]. This completes the proof of the
lemma. O

3.3. Sine-type functions

Let Z be a complete interpolating sequencePW?. Its generating function is called a
sine-type functioif it satisfies

[S(x +ia) <x1,xeR,

for somea € R. This class of functions was introduced and studiefd @ (see also [11]).
It is known that there is a constadtdepending ors such that

1S(2)] = ™M=l whenevelimz| > H. (20)

We refer the reader tf11,20] for a detailed discussion of this class. In this section, we
prove Theorems 1 and 2 under the additional assumptioisthat sine-type function. This
restriction is stronger than (5). It allows us to show the main ideas by considering a simple
case. The general case requires additional techniques which we think are of independent
interest. These techniques are given in Section 4.

3.4. Proof of Theorem 1

First we prove tha¥, € PWP-X, Itis clear that¥, is an entire function of exponential-
type so it suffices to prove tha?® e L7(R), equivalently®® e L?(R + 2iH). For
z ¢ 7, we have

k

k! 1 SED () pa(0) dC
(k) —_
@ =on ;0 </<—j)!/~,- C—2*1sQ &)

n

To see tha®® e L”(R + 2iH) observe that

/;YH

since by the Bernstein theorest¥—/) are bounded off + 2iH. The triangle inequality
gives®® e LP((R\ [, — 1,0, + 1]) + 2iH). The segmerit,, — 1, o, + 1]+ 2iH is not
essential sinc# ) is an entire function.

Now, for eachm, we have

SE=D ) pu(©)

@ —)i*is©0) 4] < o0 (22)

LP ((R\[oy =10, +11)+2H)

1 _ _
(Dr[zk] (zm) = ﬁ ((Pn}(:)[k 1](Zm+l) - (pn}f;:)[k l](Zm)) .

m+k — <m
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Noting that

ooz, ) = 0, m<n becausép,y;)(z;) =0, j<n+k—1
Prin =1 msa becausép, ) (zj) = p(z;). j > n,

we see that
@, (2) = (Zntk — 20)Pn(2) (23)
solves the problem (8). We also observe that

Cp = Zntk —2n < 1. | (24)
3.5. Convergence of the series %)’

Lemma 3. Leta = {a,} € [P be given. Then the series

Fa=)_ a, ¥y (25)

neZ

is convergent in.” (R + 2iH), and
| Fallr (r+2iH) < Const||d];». (26)

Proof. It suffices to prove (26) only for finite sequenagsand then pass to the limit in
the general case. Also it suffices to prove the convergence and obtain the corresponding
estimate in the spade” (R + 2iH).

We need additional geometric constructions. ket {o;} andd be the same as in the
definition of the contours,, (see Section 2.3). Let alsh; = {{ € R + 2iH, dist({, « +
2iH) < 0}, E = (R+2iH) \ E1.

It suffices to prove

| FallLr (&) < Const||d;», (27)

for we know already thaka € PW” and also thall - || L (£;) < || - llLr (r+2iH) for functions
from PW?, (see e.g[11]). We have

| FallLrg) = Sup{ ‘/E Fa(x)G(x)dx

:G € LY(E), |GllLa(r) <1} , (28)

here 1/p+1/q = 1. FixG € LY(E), |G| Ls(p) < 1. In view of (21) we obtain
/ Fa()G(x)dx =) a,,/ YO ()G (x)dx
E ~ E

k! Lo
=2 2,00 % G

y f S*=D(x) pa () dC
yn

C—0its
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= k! i 1
P, 2ni (k— j)!
G(x)S* =D (x)dx \ pa(O dl
XXn:“" / /E< C—x)itt ) SO (29)
Aj

We will consider eact ; separately.
Denote now = {{ €y, : =(Im{ — 2H) > 0} and

. G()S D (x)dx \ pa0)de
A= /1,% </E (= xit SO (30)

For the sake of simplicity we considﬂr}“’s only, A]T’s can be estimated in a similar way.
Consider the contour$

k={{=C+in:|& <6,n=2(E%—=0%2, A=EUUp(—k+ o, + 2iH)).

The curve/ splits C into two partsCy, we have } ¢ C7, and dist/;}, 1) > 25 also
dist(t}, 2+ i6%) > 0%,

Letw: CT — ij be the conformal mapping normalized &yin) = in + O (1), n —
+o00. (For existence of such mapping 48¢. Denote the spach((Dj) as

HY(CT) = {f(2). f analyticinC7, f(w()) € H/(CH)}. (31)

Similarly one can define the Hardy spatié(C + i6%) in the shifted domairC} + i5*.
Denote now

Gx)S* Dxydx 1 dJ =~
Qj(O:/ (C—x)j"'l =ﬁd—<jﬂj(é),
- (k—j)
Q0 = f GOS0 (32)
E (—x

By the Bernstein theorem, supp , o) IS/ (2)| < o0, s0
Q; e HI(C)) and||Qj||Hq(@) <Const||G la(k). (33)
ThereforeQ2; belongs to the Hardy space in the inner domaiﬁ(q“ +i%:

Q;j € HI(CS +i6") and|Q; ;g o+ 4150 < CONSUIG Lo (k). (34)

+io*

Let now L = UI;}. Define a measur@ on L so that its restriction to each is just
UpaOD/(SO)IdL]- Invoking the standard distortion theorems for conformal mappings

2Actually by / one can take an arbitrary smooth contour which meets some natural restriction, cBntaids
separates the seigs from the lower half-plane. It is just for convenience we define these contours explicitly.
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(see e.g[3,19]) and also the estimate 8ffrom below (see (20)) one can easily see that
is a “Carleson measure for the dom@ﬁ +i6°". This yields

1/q
Pn O d¢
(Z J WW) S Constl e ch (35)

Now, by the Hélder inequality,
1/
) ’ w)‘f !
SO

1/
[Aj] < COHS'[(Z |an|p f’( (/ | J(C)|
Up W(0)
<COnst(Z|an|f’ ( / 2501 |55

P17\

X SO |d{|
PRI

Const(z |an|1’ <Z/ 1Q; (O SO ‘Idﬂ)

< Const<Z Ianl”) 1921l gy (c+ )’ (36)
A+i0

the latter inequality follows from the fact thatis a Carleson measure f6};“+,54. Now it
Tl

remains to use (33) and (34). The quantiti’ejiscan be estimated similarly. This completes
the estimate off FallLr(e,)-

Let polynomialsg, of degree at most — 1 and functiond®, be defined by relations
(10), (12). The function®,, still solve the interpolation problem (8) and a@é{‘) = <Df,k),
ne’z.

This allows us to consider the original interpolation problem (12). Take,)} <
[Pk(Z)) and denotes,, = /¥ (z,). We havea = {a,,} € I?, hence the series

Ga=Y_ a,00 (37)

neZ

’IdCI

is convergentir.” (R) and (since aIE),(j‘) are entire functions of exponential type at most
7) on each compact set in. It also follows from (26) that, for each compact getc C,

> a0P(2)

neZ

SCK)lallprezy,  z €K, (38)

here C(K) depends upoiK only. Since@fl"‘”(O) = 0 this implies the compactwise
convergence of the series

> a0 (39)

neZ
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with an estimate similar to (38). Repeating this reasokitimes we see that the series

G =) a,0,@) (40)

neZ

is uniformly convergent on each compact seCiand
IG@ISCEK)ollypi(z)y, z€K (41)

(here the constan@@ (K) is different from that in (38), generally speaking). In addition we
have

GM iz, =d*(z,), nez (42)

A solution to the interpolation problem (8) can now be obtained in the form

F(z) = G(2) + P(2), (43)
where P(z) is a polynomial of degree at mokt— 1 chosen so thaf (z,) = a(z,), n =
0,1,...,k— 1. Directly from the construction we see that

F e PWK and ||F|lpyps < Constlielpi z).- (44)

This completes the proof of Theorem 2 in the case when the generating fus¢tiois a
sine-type function. [

4. General complete interpolating sequences

In the general case the generating functoreed not be a sine-type function. In this case
we need auxiliary (mainly) technical tools to complete the proof. In this section, we collect
these tools and indicate the adjustments to be done in the proof of the model case.

4.1. Weighted Hardy spaces

Recall the definition of outer functions in™ (see e.g[2,9] for the details).
A function k(z) holomorphic inC* is called an outer function i if for almost all
t € R, hhas non-tangential boundary valugs) = h(t + i0) satisfying

/°° log | (1)
oo 1412
and which can be expressed in the form
oo
M) = exp{/ log (1) {

—00

dt < o0 (45)

- + 4
p— t2+1}dr}, zeC™. (46)

To each weight functiomw (z) >0, r € R, which satisfies

* logw(t)
/_oo m dt < o0, (47)
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there corresponds an outer functiofz) = 1 (z), z € C* such thath(t)| = w(z),t € R.
This function is defined by (46). Similar definitions can be done for shifted half-planes
={z : £3(z — a) > 0}, a € R. In what follows we consider only weight functions
satisfying (47).
Given a weight functionv consider the weighted space

LL®) = (90). 1 € R 1917y i= [ 9@ w(ndr < o) (48)

By weighted Hardy spacB/ (C*) we mean

w (C+) = HP(C+) (49)

() Mr

hereH? (C™) is the classical Hardy space. For functiofhs H) (C*) we have

o0

IIfIIHp (c+ = Sup Lf (e +ip)[Plh(x +iy)|dx = IIfIIigy- (50)
- :

y>0J —

Functionsw € (A)) satisfy

© w(r)
/_oo T dt < oo. (51)

This follows from the fact that the Hilbert transform of the characteristic function of the
interval(0, 1), decays agl+|7|)~ L and belongs ta.”, (R). Also we havev* := w1/ (P-1 ¢
(Ay) withg = p/(p — 1). Therefore

00 w(t)—l/(p—l)

/ —oo A7
The last two relations yield (47). So, far € (A),), the corresponding outer functions as
well as weighted Hardy spaces are always well-defined.

Moreover, wherw € (A)), the Hilbert transform is a bounded operatoif)(R), (see
e.g. [8]) so eaclp € L% (R) can be split as

b=[f5+ S5 Sy € HPC: Ml < ISy + 155 e (52)

dt < oo.

with qu defined as
0

Z—Z

fi@ = t, z€ C*. (53)

This implies in particular that the dual spat (C*)* can be realized a#?, (C™). For
eachg € Hw*(C ) the corresponding functiondl, HJ(CT)* is defined as

o0
D, (f) = f FOg@ydr, 1Pl gp ety = 18l coy.
—00 w



Yu. Lyubarskii, W.R. Madych / Journal of Approximation Theory 133 (2005) 251-268 265
4.2. Entire functions satisfyin@g4,) condition

We start with the inner—outer factorization fn the upper and lower half-planes, see
for example[7] for details.

Givena € Rwe denoteC;IE = {z € C; =(Jz — a) > 0}. AssumingSto be fixed denote
by 1 (z) the outer functions i€ satisfying

IhE(x +ia) = |S(x +ia)|, xe€R.
Then
S(z) = TR E()BE(7), ze CF, (54)

wherijE(z) is the Blaschke product iﬁ;t corresponding to the zeros Sfwhich fall in
CE. If Sdoes not vanish i, we put B=(z) = 1.
The following statement seems also to be of independent interest.

Theorem 3. Let Z = {z;} be a complete interpolating sequence for P\Whd S be its
generating function. Denote

p = 2sup|imzg|. (55)
k
For each integef > O there existar > 0 such that
S
@ _ 1, whenevelimz| > a, j =1,....1. (56)
S(z)

Proof. First we recall that ifp = 2 conditionw € (A,) is equivalent to the Helson-Szeg6
condition (see e.g2])

w=expu+7v), u,vel®R), v < /4 (57)

Herev stays for the Hilbert transform of the functien It follows immediately from (5)
thatw=YP=1 ¢ (4,). Also for p>2,w € (A)) yieldsw e (Az). Combining this fact
we see that, for eagh, 1 < p < oo functionsw € (A,) admit the representation

w=-expu+7v), u,vel®R). (58)

The statement of the theorem follows from this representation. Assume for simplicity
thatj = 1, the rest can be proved by induction.

We mention thalp < oo, otherwiseZ evidently cannot be a complete interpolating
sequence. It follows from (54) that

S'(2) @
= —T7u .
S(z) h(2)
so it suffices to prove
ht'(2)
hh(2)

Sz > p,

— 0asyz — +oo. (59)
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To this end we recall thati | (x 4 ip)|? = [S(x +ip)|” € (Ap), SO

log [} (x +ip)| = u(x) + 0(x), for someu, v € L*.

Now (46) yields
h+’(z) 00 M(l) 00 ﬁ(l‘)
p _ u( G
h;)r(z) _/;oo (Z_ip—[)zdt+/_oo (Z—i/)_[)z dt al(Z)+a2(Z).

Thatai(z) — 0 asdz — 4o is straightforward. In order to prove the same statement for
ay it suffice to observe that

L b
—oo (z—ip—1)2 oo (2—ip—1)?

This completes the proof of (56) fgr=1. O

Remarks. 1. Itfollows from Theorem 3that, inthe case when the zero set of the derivative of
generating function is uniformly discrete, this set also is a complete interpolating sequence
for PWP-X, Inthe non-discrete case one can use divided differences and the block summation
procedure in order to study the corresponding interpolation problem. We refer the reader to
[10] for an explicit description of this procedure.

2. The statement of Theorem 3 can be obtained from a more general result in [4] which
relates to entire functions of completely regular growth. The proof we give in our case is
much simpler and direct than one in [4].

4.3. The general case

Now we indicate the changes to be done in the proofs of Theorems 1 and 2 to ob-
tain the general case, i.e. whéfi(x + ih)|? € (A,) for someh # 0. The proof of
Theorem 1 goes along the same line if one takes relation (51) into account. Therefore we
concentrate on Theorem 2 only, keeping the same notation as in Section 3. We have to
estimate|| Fall.»(r+iH)- As well as in the model case we shall replace this norm by an
equivalent norm| - || L»(x). Now it is more convenient to consider the noftfl| ;2 i)
this is an equivalent norm.

As in the case of sine-type functions, (27) would follow from

j21¢8)

Q; P
L mor|5s

where as befor®; are defined by (33) an@ € LY(E), |G|l <1.

The function|S(x + 2iH)| is no longer bounded from above and from below so we have
to introduce the correspondingeightedHardy spaces. Without loss of generality we may
assume that (56) holds fare A.

Define the weight functiomw({) = |S({)|”, { € T'1 and consider the corresponding
weighted Hardy space i}

dl| <Const, j=1,...,k, (60)

HP(CH) =hTHP(C)),
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hereh? is the outer function irCT satisfying|i T ({)| = [S(0)I, { € A. Relation (54) now
yields

lh+ @) =< lhy(2)], z€Cj. (61)

It follows now from (56) that the functiong; ({) = G)SE=D () satisfy; ()/S() €
L9(E). Since|S(t + 2iH)|” € (A,) we have

Q; e HA(CS; 1S9, ||Q/-||Hq(q;|s(gq)gConst.

Taking (61) into account one can rewrite the latter inequality as
7 Q; I ra(c ) < Const.

Now applying (61) once again we obtain

hiQj € HI(Cf +i6%,  [1h+Q)ll 2+ < Const.

Define by, the restriction of the measuee ™| p, (z)|| dz| to the rayl;F. It remains now
to mention tha}_ u, is a Carleson measure @E +io/2.

The proof of (60) fol,” goes along the same lines, the major difference relates to the fact
that the Blaschke produ&appears when one writes inner—outer factorizatiorfiorthe
domainCr. . This, however does not lead one to any additional complication, because it
follows from the Carleson condition f&E that|B| is bounded from below and from above
in a neighborhood of union of rays. This completes the proof of Theorem 1.
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